Convergence analysis of sectional methods for solving aggregation population balance equations: The cell average technique

نویسندگان

  • Ankik Kumar Giri
  • Jitendra Kumar
  • Gerald Warnecke
چکیده

The paper deals with the convergence analysis of the cell average technique given by J. Kumar et al. [3] to solve the nonlinear aggregation population balance equations. Similarly to our previous paper Giri et al. [1], which considered the fixed pivot technique, the main emphasis here is to check the convergence for five different types of uniform and non-uniform meshes. First, we observed that the cell average technique is second order convergent on a uniform, locally uniform and non-uniform smooth meshes. Secondly, the scheme is examined closely on an oscillatory and non-uniform random meshes. It is found that the scheme is only first accurate there. In spite of this, the cell average technique gives one order higher accuracy than the fixed pivot technique for locally uniform, oscillatory and random meshes. Several numerical simulations verify the mathematical results of the convergence analysis. Finally the numerical results obtained are also compared with those for the case of the fixed pivot technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence analysis of sectional methods for solving aggregation population balance equations: The fixed pivot technique

In this paper, we introduce the convergence analysis of the fixed pivot technique given by S. Kumar and Ramkrishna [22] for the nonlinear aggregation population balance equations which are of substantial interest in many areas of science: colloid chemistry, aerosol physics, astrophysics, polymer science, oil recovery dynamics, and mathematical biology. In particular, we investigate the converge...

متن کامل

Convergence analysis of sectional methods for solving breakage population balance equations-II: the cell average technique

This work presents the convergence of the cell average technique (J. Kumar et al., 2007, Powder Technology 179, 205-228) for solving breakage population balance equation. Similarly to our paper Kumar and Warnecke [5] of this series, we study convergence on four different types of meshes. A second order convergence is proved for uniform, locally uniform and non-uniform smooth meshes. Finally the...

متن کامل

Solving systems of nonlinear equations using decomposition technique

A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...

متن کامل

Comparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order

The work  addressed in this paper is a comparative study between convergence of the  acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method  and Adomian decomposition method for solving  differential equations of integer and fractional orders.

متن کامل

Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations

This paper presents stability and convergence analysis of a finite volume scheme (FVS) for solving aggregation, breakage and the combined processes by showing Lipschitz continuity of the numerical fluxes. It is shown that the FVS is second order convergent independently of the meshes for pure breakage problem while for pure aggregation and coupled equations, it shows second order convergent on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009